

Prof. Dr.-Ing. Jürgen Weber Chair of Fluid-Mechatronic Systems

Profile and Key Activities

GFPS Webinar Dresden | March 3rd, 2025

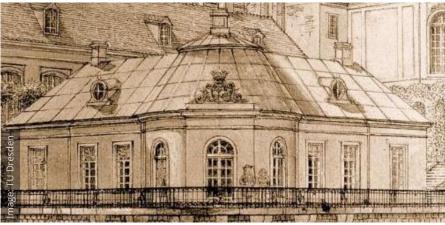
Profile and Key Activities

of the Chair of Fluid-Mechatronic Systems

Outline

- 1. Structure
- 2. Research
- 3. Academics

1. Structure General Overview



Technische Universität Dresden

Facts and Figures

Technische Bildungsanstalt an der Brühlschen Terrasse (1828)

Hörsaalzentrum TU Dresden

- approx. 30,600 students¹⁾
- approx. 8,750 full-time employees²⁾

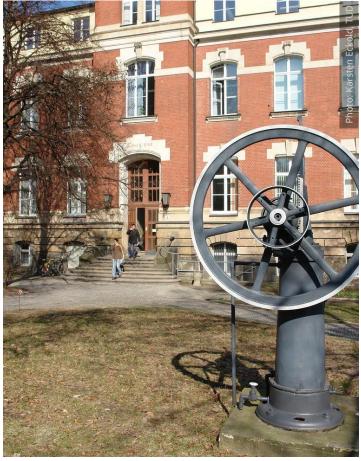
Five Schools with 17 Faculties

- School of Science with the Faculties of Mathematics, Biology, Chemistry and Food Chemistry, Physics, and Psychology
- School of Humanities and Social Sciences with the Faculties of Education; Arts, Humanities and Social Science; and Linguistics, Literature and Cultural Studies
- School of Engineering with the Faculties of Mechanical Engineering, Electrical and Computer Engineering, and Computer Science
- School of Civil and Environmental Engineering with the Faculties of Civil Engineering, Architecture, Transport and Traffic Sciences "Friedrich List", Environmental Sciences, Business and Economics
- School of Medicine with Faculty of Medicine and University Hospital "Carl Gustav Carus"

Slide 4

Faculty of Mechanical Science and Engineering

Institutes


- Institute of Power Engineering
- Institute of Manufacturing Science and Engineering
- Institute of Solid Mechanics
- Institute of Lightweight Engineering and Polymer Technology
- Institute of Aerospace Engineering
- Institute of Machine Elements and Machine Design

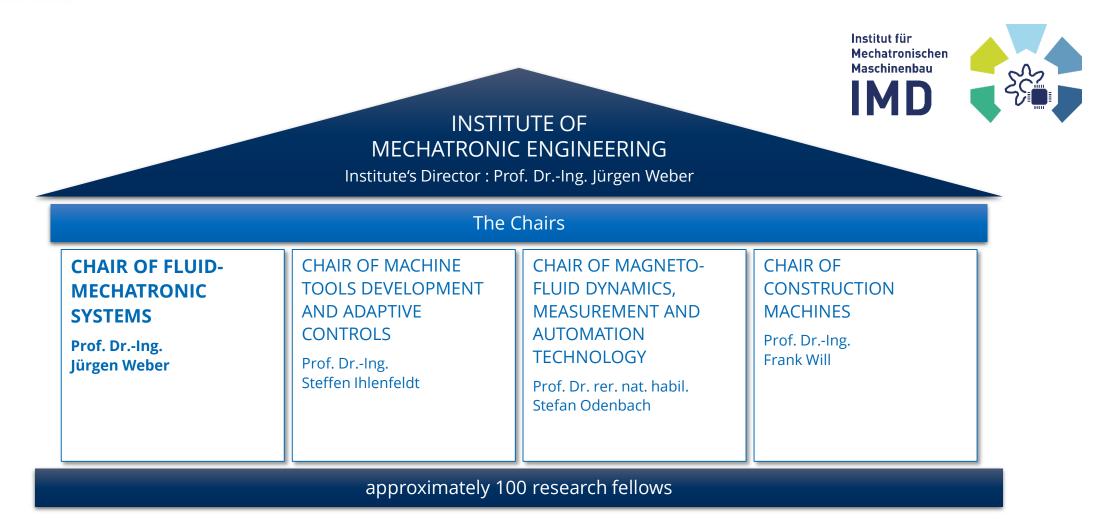
Institute of Mechatronic Engineering

- Institute of Natural Materials Technology
- Institute of Fluid Mechanics
- Institute of Material Handling and Industrial Engineering
- Institute of Textile Machinery and High Performance Material Technology
- Institute of Process Engineering and Environmental Technology
- Institute of Materials Science

□ about 5,000 students □ approx. 50 professors

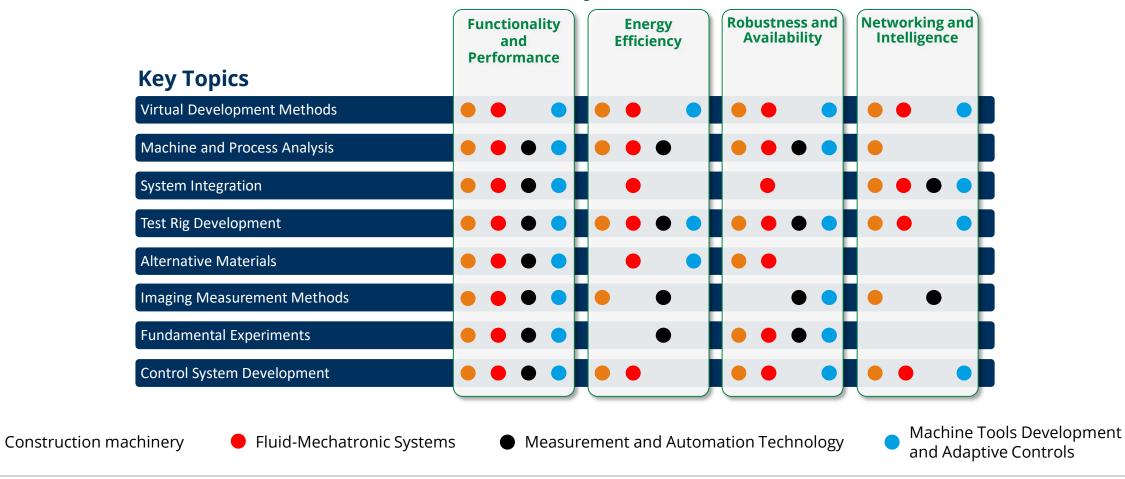
□ approx. 1,000 employees □ ~€60 Mio. third-party funds annually

Zeuner-Bau TU Dresden



Institute of Mechatronic Engineering

Overview



Institute of Mechatronic Engineering

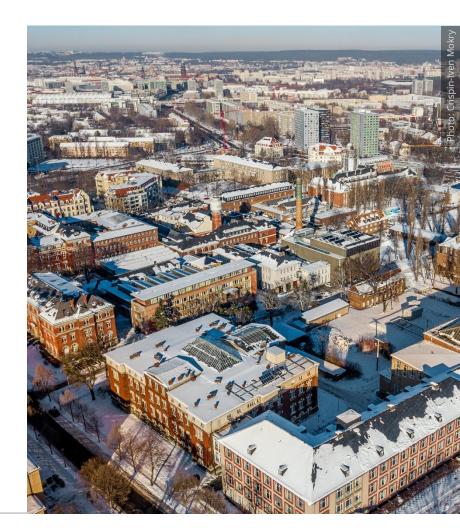
Synergies and Cooperation Possibilities

Research Objectives

GFPS Webinar Chair of Fluid-Mechatronic Systems Dresden | March 3rd, 2025

SYST

Slide 7


DRESDEN

concept

Institute of Mechatronic Engineering

Facts and Figures

- Holistic mechatronic approach in the research of machines and processes as connecting element
- 120 employees, including 100 research fellows
- Laboratory (test rigs & field tests) and Machine Shops with more than 3.700 m² plus and additional 1.100 m² of available research space
- **Approx. 6 Mio. EUR** third-party funds annually
- **Extensive equipment** for experiments and measurements under laboratory and field conditions
- Know-how, experience and software in all major simulation methods/tools (FEM, MKS, CFD, DEM, HiL, SiL, ...)

Chair of Fluid-Mechatronic Systems

Our Team

Administration Christiane Tille, Monika Schmig Nicole Hofmann, Karsten Hül	dt, Prof. DrIng.	ctor Jürgen Weber	Chief Engineer DrIng. Harald Lohse
Fluid Power Componts	Stationary Systems	Mobile Applications System Integration	Pneumatics Actuators
M. Sc. <u>Roman Ivantysyn</u> DrIng. Lutz Müller DrIng. Sven Osterland DiplIng. Juliane Weber M. Sc. Ahmed El Shorbagy DiplIng. Svenja Horn DiplIng. Lennard Günther DiplIng. Michael Lenz	DiplIng. <u>Tobias Schulze</u> DrIng. Tobias Radermacher DiplIng. Christoph Steiert DiplIng. Hauke Lerche DiplIng. Eric Pohl DiplIng. Maximilian Schmidt M. Sc. Ahmad Al-Issa	DiplIng. <u>Lukas Bachmann</u> DiplIng. Benjamin Beck DrIng. André Sitte DrIng. Jan Lübbert DiplIng. Denis Ritz DiplIng. Simon Köhler	DiplIng. <u>Thomas Kramer</u> Dipl-Ing. (FH) Annabell Effner M. Eng. Vladimir Boyko DiplIng. Chong Liu DiplIng. Johannes Göhring

Machine Shop

p Jens Ertel, Florian Görschel, Jochen Loose, Jens Schober, Stefan Scholz, Martin Schwabe, Markus Weber, Erik Heschel

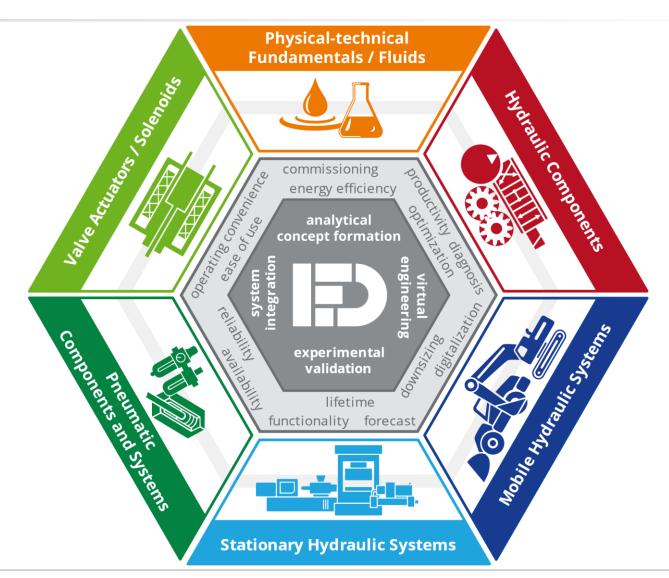
Our team is looking forward to meeting you!

General Contact:

Chair of Fluid-Mechatronic Systems, Kutzbach-Bau, Helmholtzstraße 7a, Director: Prof. Dr.-Ing. J. Weber

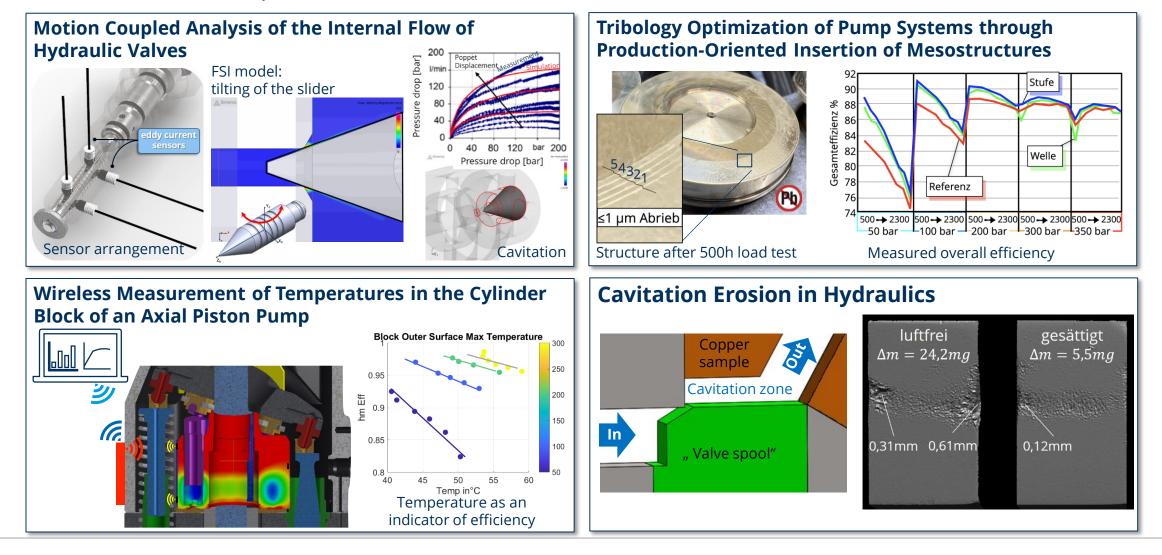
Person to Contact

- Research (general): Dr.-Ing. Harald Lohse (harald.lohse@tu-dresden.de)
- Academics: Dr.-Ing. Lutz Müller (lutz.mueller@tu-dresden.de)



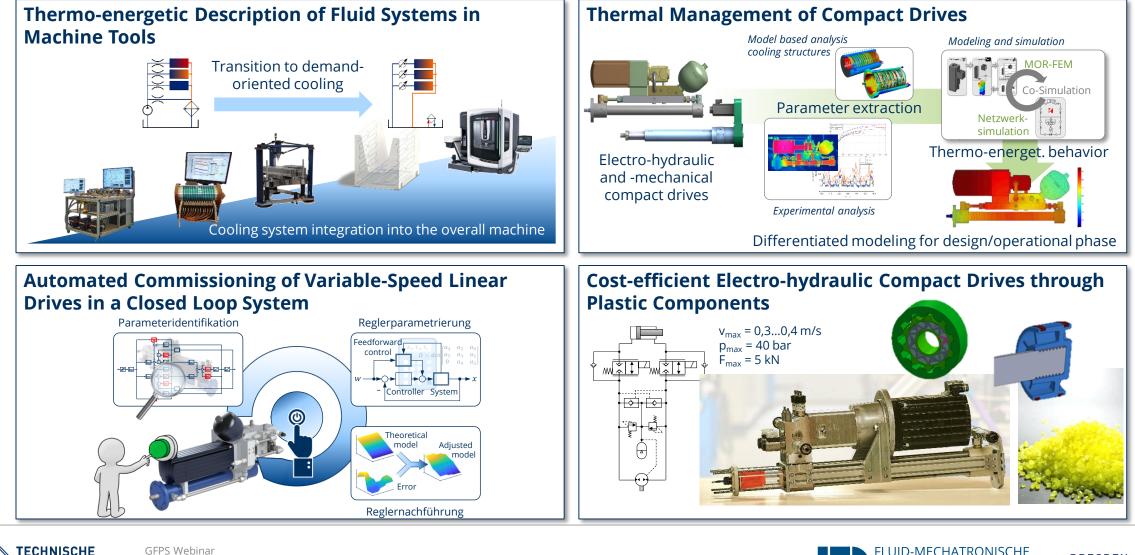
Research Focus

Overview



Fluid Power Components | Basics

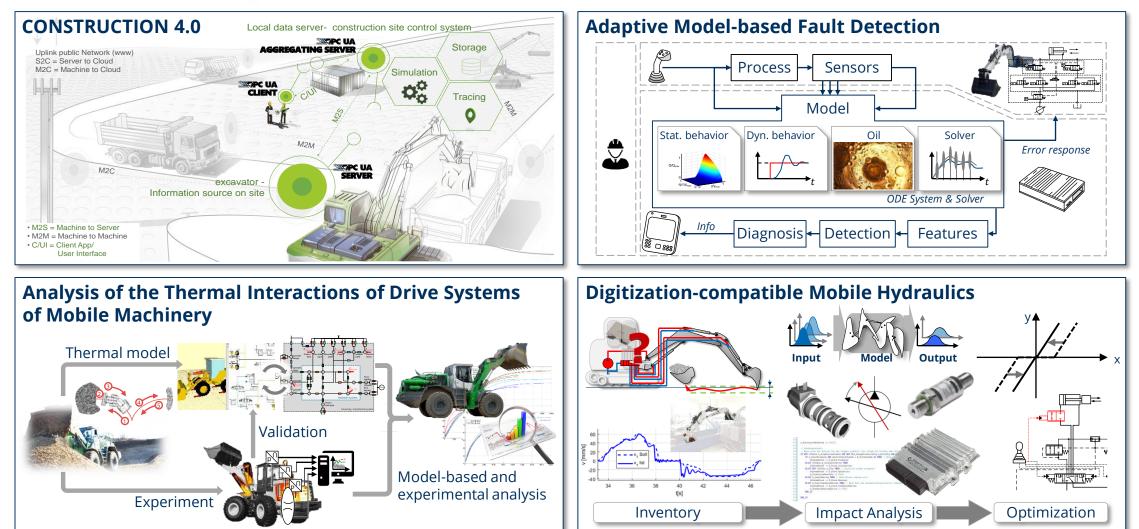
Selected Research Topics



Stationary Systems

Selected Research Topics

Chair of Fluid-Mechatronic Systems Dresden | March 3rd, 2025


DRESDEN

concept

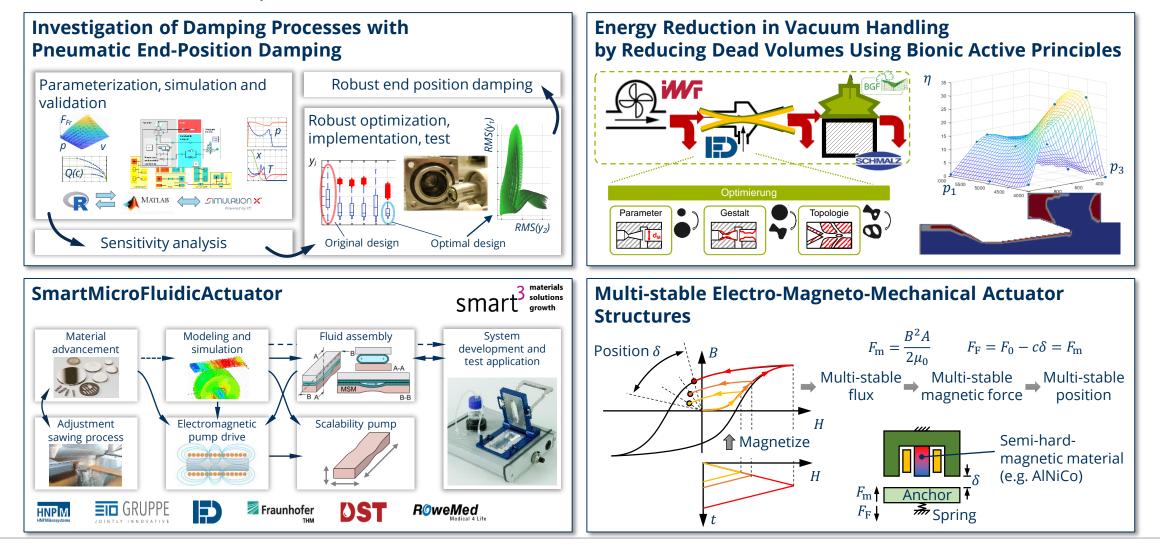
Mobile Applications | System Integration

Selected Research Topics

GFPS Webinar Chair of Fluid-Mechatronic Systems Dresden | March 3rd, 2025

DRESDEN

concept


Pneumatics | Actuators

DRESDEN

concept

Selected Research Topics

Research

Infrastructure and Technical Equipment

Experimental facilities and laboratories with a total area of 3700 m² plus 1100 m² free experimental field area (IMD)

- Modern test field with 600 m² hall area
 - Hydraulic and pneumatic section
 - Anechoic sound measurement room with possibility for sound measurements acc. to accuracy class 1 (ISO 3745 bzw. DIN 45635)
 - Reverberation chamber with 13 m³ for stationary noise investigations
- 1150 m² machine hall with another 250 m² outdoor area

Pneumatic and hydraulic pressure supply

- water-cooled central unit (520 l/min, 350 bar, 180 kW) with the possibility of pressure, flow and power regulation
- Hydraulic unit (200 l/min, 260 bar, 43 kW) for mobile hydraulic tests
- Hydraulic unit for the supply of the sound measuring rooms
- Hydraulic unit (120 l/min, 150 bar, 30 kW) for supplying the reverberation chamber or the optical measuring section

Slide 17

Research

Infrastructure and Technical Equipment

Metrological equipment

- Real-time simulation and controller hardware
- Dynamic power meters 50 kW / 80 kW
- high speed cameras
- Sound and vibration measurement systems
- Laser triangulation systems
- Laser vibrometer
- Thermography system
- Viscometers, refractometers, pycnometers
- Oxygen sensors
- Measuring microscope, precision balances

Software Equipment

- Numerical flow calculations (incl. CHT, FSI): ANSYS (CFX, Fluent, Workbench), CASPAR FSTI, PumpLinx®
- Magnetic field calculation/FEM: ANSYS (Maxwell, LS-DYNA, Mechanical)
- System simulations: SimulationX, Matlab/Simulink
- Simulation coupling (z. B. OPC-UA, TCP/IP)
- Measurement date acquisition und evaluation: LabView, DIADEM, MATLAB, IRBIS® 3 plus
- Further software tools: SolidWorks, ProEngineer, MathCAD, CorelDRAW, MS Office
- Own developments for component calculations

Research

Infrastructure and Technical Equipment

Hydraulic Test Facilities

- Deep drawing press 250 t
- 160 t injection molding machine
- Electro-hydraulic load axis
- Working hydraul. of excavator kinematics
- Electro-hydraul. active steering systems
- 24 t wheel loader
- Test rigs for hydraulic valves
- Hydraulic torque test rig for displacement units
- Cavitation/erosion investigation
- Fluid analysis: tensile, shear test
- Flow visualization
- Automotive component test rigs
- Hydraulics educational test rig

Pneumatic Test Facilities

- Flow measuring section according to DIN 6358
- Laser refraction test for air flow visualization
- Test rig for characteristic value measurement of pneumatic vacuum ejectors
- Magnetic force test rig for pneumatic/hydraulic valves
- Pneumatic cylinder test rig
- Pneumatic handling system
- Blow-out test rig for bulk solids
- Pneumatics educational test rig

Software-/Hardware-in-the-Loop

- Real-time-simulation: Core i5-2500K, 4 GB RAM
- Signal conditioning:
 Sensor emulation
 - 4 20 mA, +/- 10 V, TTL
 - Electric switch measurement
 5 A, 0 24 V, CAN
- Imprinting of electrical faults:
 68 channels
- Software and coupling:
 - □ Simulation: SimulationX, Matlab/Simulink
 - Programming: CodeSys, MATLAB, C/C++
- CAN monitoring

Research Networking

Overview

GFPS Webinar Chair of Fluid-Mechatronic Systems Dresden | March 3rd, 2025

Slide 20



DRESDEN

concept

3. Academics Overview

Lectures

Overview

Fundamental Lectures

- Fundamentals of fluid power drives and controls
- Actuators

Specialized Lectures

- Fluid power components and systems
- Sealing technology
- Electro-hydraulic drive technology in industrial applications
- Pneumatic control systems
- Practical course fluid power in industrial applications
- Mobile hydraulics
- Control systems, software development and safety in mobile applications
- Practical course fluid power in mobile applications
- Modeling and simulation of fluid power systems
- Modeling and simulation of fluid power components
- Aircraft hydraulic systems

Student Works

- Undergraduate projects
- Diploma, bachelor and master theses

Lectures

Mechanical Engineering

5 th Semester	6 th Semester	8 th + 9 th Semester	
MW-MB-AKM-02:		MW-MB-AKM-15: Fluid-Mechatronics in Industrial Applications	
Fundamentals of Drive Systems		 Electro-hydraulic drives in industrial applications (1/1/0) Control systems of pneumatic drives (1/1/0) 	
 Fundamentals of fluid power drives and control (2/1/0) 		Practical training in fluid power and industrial applications (0/0/1)	
 Electrical drives (2/1/0) 		MW-MB-AKM-23: Fluid-Mechatronics in Mobile Applications	
		 Mobile hydraulic systems (2/1/0) Control, software development and safety in mobile applications (1/0/0) 	
 MW-MB-AKM-07: Hydraulic Components and Systems Hydraulic Components and Systems (2/1/0) Sealing technology (2/0/0) 		 Practical training in mobile hydraulic applications (0/0/1) 	
		MW-MB-AKM-24: Computational Engineering in der Fluidtechnik	
		 Modelling and simulation of fluid power systems (lumped parameters) (1/2/0) Modelling and simulation of fluid power components (CFD, FEM) (1/1/0) 	
Bachelor ————————————————————————————————————		Mastar	
		───── Master ─── ► DiplIng. ──►	

Construction Future Lab – CFLab gGmbH

THE centre for application research in digital construction

Cooperation with the construction industry

Paving the way for innovative work processes

	Chair of Fluid-Mechatronic Systems
1	Chair of Construction Machinery
	Chair of Construction Machinery
	Chair of Construction Management
(Chair of Industrial Design Engineering
l	Chair of Industrial Design Engineering
	Chair of Industrial Communications

Prof. Dr.-Ing. Jürgen Weber

Chair of Fluid-Mechatronic Systems

Prof. Dr.-Ing. Frank Will

Construction Machinery

Chair of

Prof. Dr.-Ing. Dipl.-Wirt.-Ing. Jens Otto Chair of Construction Management

SACHSEN

Gefördert durch Freistaat Sachsen und Bund als Landesmaßnahme mit übergeordnetem staatlichen Interesse im Rahmen des Strukturwandels

Interdisciplinary

Volker Waurich

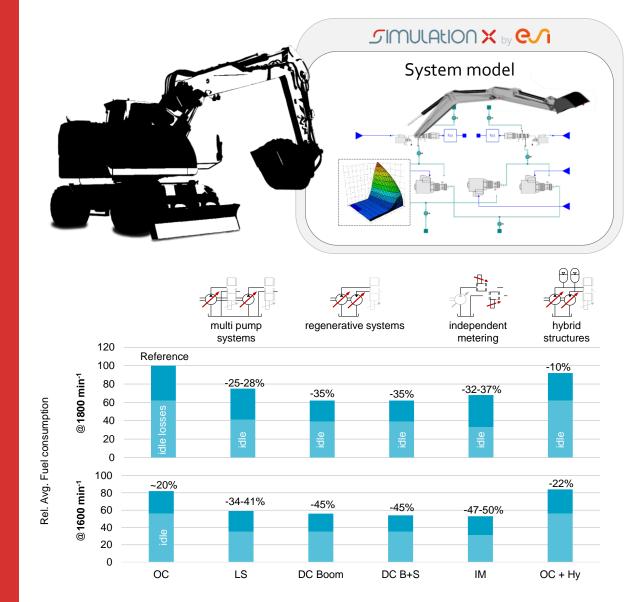
Johannes Stockbauer

Jan Lübbert

Jianbin Liu

Florian Storch

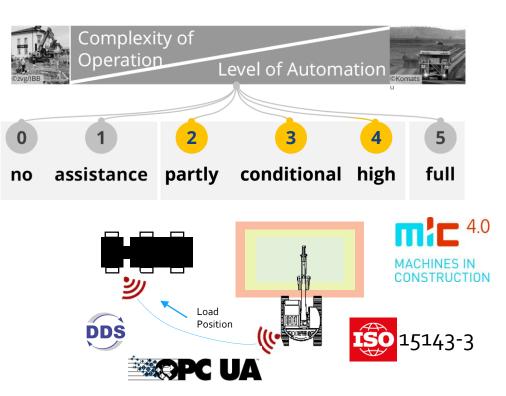
Max Brandt



Some selected CFLab projects

CF LAB

Simulation-based efficiency evaluation of systems architecture for hybrid & electric contruction machines


CF LAB

Automation of machine functions

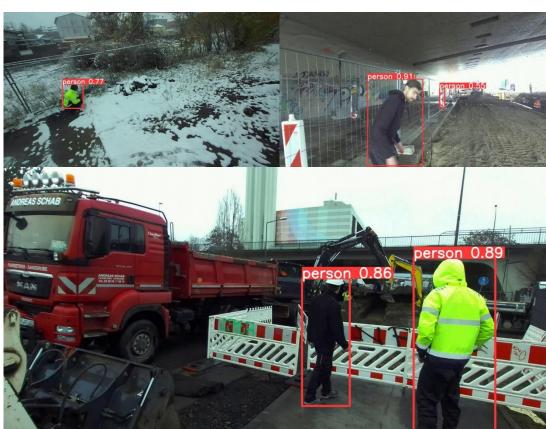
certification of standardized interfaces & connectivity

interoperability of mixed fleets

- Development and test of automated machine functions for earthmoving machinery
- Integration, test and certification of standardized interfaces
- Focus on interoperability due to mixed fleets of construction companies

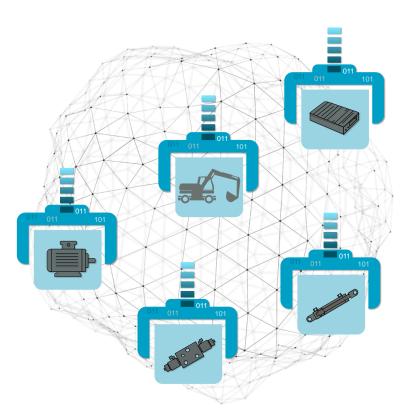
Construction Robotics – Walling, drilling, spraying

- Virtual Prototyping
- Computer Vision for Handling and Planning
- Demonstrators on the basis of 6-axis industrial robot

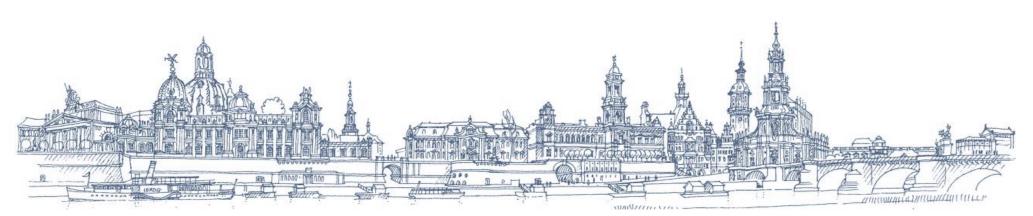


CF LAB

Increasing the reliability of people detection on construction sites through **Al-based** technologies


- Use of YOLO model and generation of construction site typical image data
- Publication at 10th Symposium Construction
 Machinery on September 26th and 27th, 2024
 in Dresden

Fluid 4.0 –


Implementation of the digitalisation for fluid power 4.0 in the cross-industry and cross-manufacturer data room using asset administration shells, submodels and demonstrators **CF** LAB

Joint research project with nearly every player within the fluid power community

Thank you for your attention!

Technische Universität Dresden | Institute of Mechatronic Engineering Chair of Fluid-Mechatronic Systems

Prof. Dr.-Ing. J. Weber | +49 (0)351 463 33559 | fluidtronik@mailbox.tu-dresden.de https://tu-dresden.de/mw/fluidtronik | Twitter | LinkedIn

